©ABEM

CONEM 2012 «Engenharia em destaque»
VIl Congresso Nacional de Engenharia Mecénica
Séao Luis - Maranhdo - Brasil

31 de julho a 0% de agosto
www.abcm.org.br/conem2012

A FINITE ELEMENT FOR ACTIVE COMPOSITE PLATES WITH
PIEZOELECTRIC LAYERS APPLIED TO COMPOSITE CYLINDERS

Murilo Sartorato, murilosart@gmail.com*
Ricardo de Medeiros, medeiros@sc.usp.br’
Marcelo Leite Ribeiro, strova@hotmail.com*
Volnei Tita, voltita@sc.usp.br!

1 USP — Universidade de S&o Paulo, EESC — Escola de Engenharia de S3o Carlos — Av. Trabalhador Sdo Carlense, 400 — 13 Séo
Carlos /SP, Brasil

Abstract. In recent years, the study of smart composite materials has increased due to the development of active
piezoelectric fibers that can be produced into thin patches of laminates made of piezoelectric fibers reinforced
polymers that, unlike the more common used piezoceramics, can undergo large displacements and strains without
fracturing. This characteristic improves the potential of such materials as curved shaped laminates can be produced
and used as both sensors and actuators in non-planar structures for several applications such as structure health
monitoring, damage identification, vibration control and/or suppression, energy harvesting, along with others.
However, several obstacles remain to the practical application of this technology: difficulty in fiber manufacturing
techniques, mechanical and electrical properties prediction and obtainment and mechanical behavior prediction and
simulation. In this work, a model for structural composite laminates containing active piezoelectric layers is presented
and used to formulate a shell quadratic finite element with eight nodes for large displacements and curved structures.
The element was implemented into the finite element commercial package Abaqus through its UEL (User ELement)
Fortran subroutine. Numerical results of carbon-epoxy composite cylinders with macro-fiber composites (MFC)
piezoelectric patches attached under static and/or dynamic load cases are presented.
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1. INTRODUCTION

In the last decades, the use of piezoelectric smart composite material in both academic and industrial environments
has been steadily increasing, especially in areas that focus on highly optimized structural projects, such as the
aeronautical, aerospace and petroleum industries. In particular, in the aeronautic industry, smart structures features of
having embedded sensors and actuators can lead to great improvements on an aeronautic structure performance by
using practices like: structure health monitoring, flow-control, vibration control, flutter control and energy harvesting.

However, the use of the common piezoelectric ceramics introduces limitations in both the production and usage of
smart structures due to its brittleness, large dimensions thick-wise, and low flexibility. In the last years, the development
of piezoelectric materials in the form of fibers solved some of these limitations. The concept of piezoelectric fibers
allowed the creation of laminated composite materials with active fiber embedded in polymer matrixes, creating smart
composite materials that have high flexibility, structural resistance and can be applied to curved surfaces.

Still, several obstacles remain to the practical application of this technology: difficulty in fiber manufacturing
techniques, mechanical and electrical properties prediction and obtainment and mechanical behavior prediction and
simulation.

Several works have been published in the last years about the simulation of such structures using finite elements.
Some researchers like Paik et al (2007) defend that simpler models cannot completely simulate a smart composite, and
simulations must be made using a micro-scale modeling of each fiber. This approach comes with a great computational
cost and is impractical for large structures. As such, several researchers implement plate finite element models that
simulate smart composites, in particular, Azzouz et al (2001), Gabbert et al (2004) and Marinkovi¢ et al (2008)
presented linear plate finite element models for active composites with increasing complexity theories. In this work, a
finite element model for active fiber composites is proposed.

However, as noted by Azzouz et al (2001) and Marinkovi¢ et al (2008), the great flexibility introduced by the
polymer matrixes in the fibers and the electro-mechanic coupling makes the non-linear behavior of great rotations
prominent in some cases.
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As such, in this work, a non-linear plate finite element for smart composites is proposed, using the von Karman
deformations. Also, a co-rotational approach is used to both correctly simulate curved surfaces and link the electric-
mechanical coupling equations to the Classical Theory of Laminates recovering the classic constitutive composite
equations — the ABBD matrix.

The element was implemented into the finite element commercial package Abaqus through its UEL (User Element)
Fortran subroutine. The advantage of the implementation of the models into pre-processing software like ABAQUS is
the ability to easily model complex structures. The UEL subroutine affects only the element processing, specifically the
residue and stiffness and mass matrixes calculations, as shown by Figure 1. As such, other phases of finite element
analysis that are time consuming and difficult to program for complex structures like meshing, applying loads and
boundary conditions and global matrixes assemble are covered by ABAQUS’ functions and user interface.

Comparative results with works found on the literature of quasi-static analysis of composite plates and cylinders
with piezoelectric patches are presented.
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Figure 1. Summary of the Abaqus and UEL subroutine interactions
2. FORMULATION OF THE ELEMENT

In this section the constitutive equations for a piezoelectric active layer of composites, the composite layer-up
equations and the kinematics and electrical assumptions used are presented. The constitutive equations for an
piezoelectric active layer are based upon the works of Marinkovi¢ et al (2007). The kinematic assumptions are modeled
from the Reissner-Mindlin First-Order Shear Theory taken the adaptations for a co-rotational system made by Reddy
and Ochoa (1996) and Gabbert (2004), which were based in the work of Ahmad et al (1970), extending the modeling
with the use of von Karméan’s non-linear deformation for small strains and great rotations. This was made as researchers
such as Azzouz et al (2001) and Marinkovi¢ et al (2008) noted that for some cases, the non-linear contribution of the
displacements to the off-plane distortions (y,3; and y;3) are prominent, which in turn are one of the main forms of
piezoelectric effects coupling. Electrical assumptions are made based on Maxwell Equations and are discussed below.

2.1. Kinematic Assumptions
The classic kinematic equations for the displacements of a curved plate can be written in a co-rotational model by

using three different coordinate systems: the natural system (&;,¢,,&3), the global system (xq,x,,x3), and the co-
rotational system (x;, x3, x3), shown in Figure 2. The co-rotational system (or local-running system) varies from node to
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node where, the x; and x; axis are given by the normalized vectors that defines the tangent plane of the plate’s mid-
surface in a given node, and the x5 axis is the normalized normal vector to this plane.

A

&3

Figure 2. Coordinate systems used in the formulation

The First-Order Shear Theory uses Reissner-Mindlin assumptions for the plate displacements: any thickness
direction line of a shell remains straight after deformation, but not necessarily normal to the mid-surface. As such, in the
co-rotational system, the displacement of any point can be given by a sum of the displacements at the mid-surface
(us®, ui?, us?) and a linear function on the rotations about the x; and x; axis (61, 65):
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Equation (1) can be used in a discretized form with the shape functions ¢; and the degenerated coordinate
transformation matrix H;.
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It should be noted that the First-Order Shear Theory applies to the co-rotational system, and in this coordinate
system there are five degrees of freedom associated with each node (u;°, u5’, us’, 8;°, 8;°). A coordinate transformation
using the coordinate transformation matrixes T and its degenerated counterparts for the rotations degree of freedom H
and Tg, given by Eq. (3), can be applied recovering the six global degrees of freedom (u?,ud,u9, 6,, 85, 85), shown in

Eq. (4).
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The constitutive equations, in special the stress-strain relations, presented in Eq. (16), are based in the co-rotational
system of coordinates. As such the strain fields need to be calculated in the co-rotational system and are dependent on
the displacement gradients. These gradients can be calculated in the global system of coordinates and transformed using
the T matrix, as shown in Eq. (5).
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Using the symmetric property of the strain tensor and the assumption of a plane state stress in each layer of the
laminate, we can have the von Karman strain vector given by:



VIl Congresso Nacional de Engenharia Mecéanica, 31 de julho a 03 de Agosto 2012, S&do Luis - Maranhéo

() () ()

€11 Uz u?,

P Y S VN S PR ©)
Y23 |uzs +usz, | I ‘0 o
Y{3 u1,3 +u§’1 t 0 )

Combining Eq. (5) and Eq. (6), the strain fields can be summarized as the following matrixes in Eq. (7).

g ([Bn &Br 1", [BmiBm+§sBy6F B $sBuui'By {ui}n @
B BSO BS1 + f3BSf Bsou?Bso + 5335191'71350 €3BSOu?BS1 6;
i = 1..3,n = number of nodes per element
Also, for a simpler formulation of the finite element, the B,, and B,,,, matrixes can be defined:
[Bn O [Bnul'Bf BnulB7'
s |0 B +I 0 B/O!'By, | ®)
y {BSO lej By, ul'By, 3519?350]

0 By 0 Byul'B,

Bn 071" [Bnul'Bf 0 "
Bu<P = [ 671 B ] + . n n (9)

It should be noted that in this formulation, the common used assumption for laminate composite plates that the in
plane strains can be separated in a membrane contribution (e,) and a flexural contribution, linearly proportional to the
curvature of the plate (k) naturally appears. The same can be done with the off-plane distortions; they can be separated
into a shearing portion (y,), related to the mid-surface displacements, and a torcional portion (y, and x,) related to the
rotations both directly (y,) and linearly (k). These decompositions are given in Eq. (10).

=)= ) o () @

The constant parts of the distortions are separated into y, and y; because each one is related to a different
compatible external effort, as shown by Ahmad et al (1970).

2.2. Smart Composites Constitutive Equations

Problems with piezoelectric coupling are those in which an electric potential gradient causes deformation and vice-
versa. There are different ways of writing the mechanical-electrical coupling (Ikeda, 1996), but for most problems and
the formulation of finite element problems, in general, it is useful to use the e-form, which couples the mechanical
stress fields with the electrical fields. This coupling between is characterized by the e,;; piezoelectric coefficients, and
can be summarized by the tensorial relation in Eq. (11):

% = Comeia ~ kil ;o) g (11)
D; = ej & + diy Ex
where: gy, &, and E, are respectively: the stress, strain, and electrical fields; D; are the components of the
electrical displacements; Cf, is the fourth order elastic tensor for the short-circuit electrical bounding conditions
(E = constant); d;, is the dielectric constants for a uniform displaced mechanical boundaries (¢ = constant); and e,
are the piezoelectric coupling coefficients.
Due to the symmetry of the C, e and d tensors; the consideration that piezoelectric layers are transversely isotropic;
and using the plane stress state (g5; = 0) and uniaxial transversal polarization over the piezoelectric layers (E; = E, =
0) hypothesis, one can summarize Eq. (12).
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Starting from Eq. (12), one can use the Classical Laminated Theory to obtain the final constitutive equations for an
active laminate. However, it should be noted that some changes to the theory must be applied: both the in-plane and off-
plane matrixes Q, and Q, must be rotated in the angle of the fibers and the kinematic assumptions showed in Eq. (10)
must be taken into account.

In particular, when the constitutive equation is integrated over the thickness, the effects of these kinematic
assumptions creates more compatible generalized efforts over the laminate than the common used normal forces (N)
and bending moments (B): the shear forces (Q) and torcional moments (7).

k=1
(14)
N
_ 0'23
B *3 013
=1 3k 1
(15)
As such, the classic ABBD laminate constitutive matrix is extended into the one shown in Eqg. (18).
N A B 0 0 &
M B D 0 0 Kr
= 16
Q 0 0 G Gul)Yotm (16)
T 0 0 G, H K¢
Where
N 1 N 1 N
Y i i Nk r2 r2 "k r3 13
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k=1 k=1 k=1
N
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Geometrically, we have that, given a plate in lateral view, y, is related to the in-axis distortion, y, is related to the
section rotation due to torcional moments and, «; is related to the distortion of the section due to the torcional moments,
as represented by Figure 3.
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Figure 3. A. Geometric effect of y, B. Geometric effect of y; C. Geometric effect of k,
As the uniaxial transversal polarization over the piezoelectric layers (E; = E, = 0) hypothesis was used, there’s no
need for coordinate transformation of the fibers from layer to layer. This fact is enforced by the fact that in general,
electrodes as installed over the plates, making the electrical fields always normal to each layer. This way, the integration

of the dielectric and piezoelectric coupling parts of the constitutive matrix can be simplified to just a sum of the
properties of each layer powdered by said layer thickness:

€31 1gminate = Sk=1 €51, (X3 = X3, ) (18)

453 aminate = 2k=1 4335 (xék - xék—l) (19)
2.3. Electrical Assumptions

Starting from Gauss’ Law, we have that:

V-D=ps (20)

As the electrodes of the laminates are usually installed such as there is only fields in the xj direction, in this

direction there is no free charge through the laminate thickness. Using this assumption with Eq. (12), we can write D5 as
a function of the strains and electric fields:

D3 = e31(&11 + &32) + d33E5 (21)
= e! d’ —=0
dx; és1 (6x§ * 0x; s 0x;
(22)

Using Eq. (22) with Faraday’s Law of inductionE; = —d¢@/dx5, with the piezoelectric boundary conditions
@ (x{,xg,xg = g) =Ap, @ (x;,x;,xg =— %) = 0, we obtain the electrical field-difference of potential relation:

£ = —x’eill de;q  0eyy _A_(p
3 Sdi, \dxs  0x} h
(23)

Therefore, the electrical field can be obtained from the difference of potential over the electrodes and the plate
membrane strains gradient. This mechanical-electrical coupling in the electric fields is explained by the thickness

reduction created by the Poisson effect, as Piefort (2000) said. However, as the term (68“ a822) is usually difficult

dx} + dx}

and computational expansive to be calculated. Also, this term is only relevant when compared to the difference of
potential term in the specific application of the piezoelectric layer being used as a sensor in plates where its thickness is
the greatest portion of the whole laminate — over 60% of the laminate total thickness according to Pieford (2000). That
way, this term is ignored, and a discretized relation between the electric field and the difference of potential can be
written:

(24)
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Where ¢; and h; is, respectively, the difference of potential and the thickness over each node of the element.
3. FINITE ELEMENT EQUATIONS AND IMPLEMENTATION AS A UEL SUBROUTINE

As the final objective of the present work is to implement an active composite finite element in the Abaqus’ UEL
subroutine, only elemental quantities need to be calculated. In particular, the subroutine needs the internal forces vector
and the non-linear equivalent of the mass, damping and stiffness matrixes. In the current model, both the mass and
damping matrixes are considered constant, as the non-linear equivalent of the stiffness matrixes is the electric-
mechanical enthalpy hessian matrix.

Given the energy potential over a single element:

N=U,+K+P+Q (25)

Where U, is the total energy deformation, K is the kinematic energy, Q is the work of dissipative internal forces,
and P is the work from the external loads, by the Principle of stationarity of the potential energy, the system will be in
balance when:

8T = 8U, + 6K + 6P + 6Q = 0 (26)

The §U, portion is given by the integration of the specific electric-mechanic enthalpy (or piezoelectric Gibbs’
energy) over the element volume. According to Ikeda (1996), 5h can be given in the e-form by:

8h=>(6z- 0 — 8E - D) @27

Using Eg. (27) with the constitutive relations in Eq. (12), and applying the classical relations for finite element for
the calculation of the §IK and &P portions, found in Bathe (1996), and assuming 5Q can be modeled as a linear viscous
damping (with the damping matrix C), we obtain the elemental equilibrium equation:

fp6u-61’l+C6u-611+(5€CE:8—(S‘Eet:E—é‘Ee:s—é‘Eds:EdV
v

=f6u-de+f6u-tdS+6u-F—f6<p-qu—(p-Q
v s s
(28)

Where u = {uy,u,, us, 64,6, 93}"T,for n = number of nodes in the element is a vector containing each
mechanical degree of freedom presented in the element, ¢ = {¢p™}7, for n = number of nodes in the element is a
vector containing the difference of potential in each node; p is the density of the plate; b, t, q, F, and Q are,
respectively, the body forces, surface forces, electrical charges distribution over the surface of an electrode,
concentrated forces and electrical charges.

As the UEL subroutine doesn’t support distributed loads, the present work uses: b =t = g = 0. Considering that
the system of equations in Eq. (28) needs to be solved for every virtual displacement or virtual application of difference
of potential, it can be written as the commonly used form:

Mii + Ctt + Kyyu + Kypp = F

29
K(puu + K(p(pfp =q (29)

Where, using the Gauss Quadrature integration method the matrixes M, C, Ky, Ky, Ky, and K, are given by:

M =381 pihijij det (z_;_l) w; (30)

C = aM + bK,, (31)
A B 0 0

K = 5y wedet (27) [ B Bo? GOH B, (32)
0 0 G, H

F) -1
Kyp = X8, w; det <£ ) (Blf(peTB(p) (33)
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F) -1

Kup = 38, w; det <£ )(BgeBw) (34)
a _1

Kpp = 28—, w; det <£ ) (B5d*B,) (35)

Where w; are the Gauss Quadrature weights and a and b are the Rayleight linear damping parameters. It should be
noted that, as B, and B,,, are matrixes that depends on the displacements, the problem is clearly non-linear. However,
in such cases, the implementation in a UEL subroutine is straight-forward, as Abaqus’ solver automatically updates the
results using Newton’s method.

4. RESULTS

The implemented model was compared, at first, to analytic results found on the literature of a planar piezoelectric
beam. The first simulation is a benchmark test first proposed by Hwang and Park (1993) and analytically solved by
Tzou (1993). It consists of a bimorph piezoelectric beam with dimensions of 100x5x1 mm, made of polyvinylidene
fluoride (PVDF) and with properties given by Tab. 1. Comparison results between the analytic solution and the present
model are given in Fig. 4.

Table 1. Material properties used in the simulations

Property Material _ _ _
PVDF Carbon-epoxy laminas | Piezoelectric patches

C11 [GPa] 2,183 171,2 115,0

C12 [GPa] 0,6332 3,768 70,60

C22 [GPa] 2,183 11,08 115,0

C13 [GPa] 0,6332 3,768 109,0

C44 [GPa] 0,8463 5,4 22,00

C66 [GPa] 0,8463 5,4 12,90
e31 [C/mm?] 3,266*10° - 9,6*10°

d33 [nF/m] 0,1261*107 - 0,171*10°

0.035 ; ; ; 5
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Figure 4. Results of the first example

It can be seen that the present modeling has a close result to the analytic solution, obtaining a final deflection of
3,42 mm, a 3,26% difference from Tzou (1993) solution of 3,312 mm. These differences are probably attributed to the
non-linear geometrical model.

The second example, proposed by Marinkovi¢ et al (2006) consists of a simple-supported composite half-cylinder
with dimensions: 100 mm radius, 60 mm length and a [0°/45°/-45°/0°]s layer-up with properties given by Table 1. The
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outmost layers consist of piezoelectric patches with a 0,24 mm thickness and the innermost layers consist of carbon-
epoxy laminas with 0,12 mm thickness. Both a mechanical load of 100 N in the center-line and a electrical load of a
10V difference of potential were applied. A mesh consisting of 180 elements with 8 nodes each was used and is shown

in Fig. 5, with the mechanical load.

Figure 5. Mesh and mechanical load case for the second example

The deformed shapes for both the mechanical and electrical loads are shown in the Fig. 6. Results of the
displacement of the centerline are shown in Fig. 7 and are compared to the results obtained by Marinkovi¢ et al (2006).
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Figure 7. Deflection of the center-line for: A. mechanical loads B. electrical loads
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5. CONCLUSIONS

This work presented a co-rotational, non-linear finite element model for active composite curved plates. The model
was implemented in Abaqus’ UEL (User Element) subroutine and used for static simulations of numerical examples
found on the literature of both planar and curved composites. The applicability of the implemented model was shown by
comparing numerical simulations with results found in the literature. The results showed little differences to the ones
found on the literature, probably due to the geometrical non-linear model contained in the present work. Finally, the
implemented element is a base for other more complex models such dynamic and modal responses or more complex
structures that will be approached in future works.
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